The search above the table searches the entire publication content (including abstract and keywords); the search and filter fields in the table only refer to the respective column. All filter and search options can be combined with each other - this way very precise search results can be achieved. By clicking on "Clear filters" the table is reset to its original state (Attention: It may happen that selection filters are not completely reset; in this case the filters have to be reset manually or - most simply - the whole page has to be reloaded).
A click on the title of an individual publication opens a new page with detailed information (including a link to PubMed, if available). In some cases, cell contents are abbreviated with a ... (e.g. DOI and Journal). This has no influence on copying the contents of these cells: The entire content is copied anyway.
Title of publication | publication_post_content | DOI | Journal | Work Type | Year |
---|---|---|---|---|---|
Title of publication | publication_post_content | DOI | Journal | Work Type | Year |
AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis |
Hypercapnia (elevated CO(2) levels) occurs as a consequence of poor alveolar ventilation and impairs alveolar fluid reabsorption (AFR) by promoting Na,K-ATPase endocytosis. We studied the mechanisms regulating CO(2)-induced Na,K-ATPase endocytosis in alveolar epithelial cells (AECs) and alveolar epithelial dysfunction in rats. Elevated CO(2) levels caused a rapid activation of AMP-activated protein kinase (AMPK) in AECs, a key regulator of metabolic homeostasis. Activation of AMPK was mediated by a CO(2)-triggered increase in intracellular Ca(2+) concentration and Ca(2+)/calmodulin-dependent kinase kinase-beta (CaMKK-beta). Chelating intracellular Ca(2+) or abrogating CaMKK-beta function by gene silencing or chemical inhibition prevented the CO(2)-induced AMPK activation in AECs. Activation of AMPK or overexpression of constitutively active AMPK was sufficient to activate PKC-zeta and promote Na,K-ATPase endocytosis. Inhibition or downregulation of AMPK via adenoviral delivery of dominant-negative AMPK-alpha(1) prevented CO(2)-induced Na,K-ATPase endocytosis. The hypercapnia effects were independent of intracellular ROS. Exposure of rats to hypercapnia for up to 7 days caused a sustained decrease in AFR. Pretreatment with a beta-adrenergic agonist, isoproterenol, or a cAMP analog ameliorated the hypercapnia-induced impairment of AFR. Accordingly, we provide evidence that elevated CO(2) levels are sensed by AECs and that AMPK mediates CO(2)-induced Na,K-ATPase endocytosis and alveolar epithelial dysfunction, which can be prevented with beta-adrenergic agonists and cAMP.
Keywords
|
10.1172/JCI29723 | J Clin Invest | Original | 2008 |
Simvastatin reduces Chlamydophila pneumoniae-mediated histone modifications and gene expression in cultured human endothelial cells |
Inflammatory activation of the endothelium by Chlamydophila pneumoniae infection has been implicated in the development of chronic vascular lesions and coronary heart disease by seroepidemiological and animal studies. We tested the hypothesis that C. pneumoniae induced inflammatory gene expression is regulated by Rho-GTPase-related histone modifications. C. pneumoniae infection induced the liberation of proinflammatory interleukin-6, interleukin-8, granulocyte colony-stimulating factor, macrophage inflammatory protein-1beta, granulocyte/macrophage colony-stimulating factor, and interferon-gamma by human endothelial cells. Cytokine secretion was reduced by simvastatin and the specific Rac1 inhibitor NSC23766 but was synergistically enhanced by inhibitors of histone deacetylases trichostatin A and suberoylanilide hydroxamic acid. Infection of endothelial cells with viable C. pneumoniae, but not exposure to heat-inactivated C. pneumoniae or infection with C. trachomatis, induced acetylation of histone H4 and phosphorylation and acetylation of histone H3. Pretreatment of C. pneumoniae-infected cells with simvastatin or NSC23766 reduced global histone modifications as well as specific modifications at the il8 gene promoter, as shown by chromatin immunoprecipitation. Reduced recruitment of nuclear factor kappaB p65/RelA as well as of RNA polymerase II was observed in statin-treated cells. Taken together, Rac1-mediated histone modifications seem to play an important role in C. pneumoniae-induced cytokine production by human endothelial cells.
Keywords
|
10.1161/CIRCRESAHA.107.161307 | Circ Res | Original | 2008 |
Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand |
Mononuclear phagocytes have been attributed a crucial role in the host defense toward influenza virus (IV), but their contribution to influenza-induced lung failure is incompletely understood. We demonstrate for the first time that lung-recruited "exudate" macrophages significantly contribute to alveolar epithelial cell (AEC) apoptosis by the release of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a murine model of influenza-induced pneumonia. Using CC-chemokine receptor 2-deficient (CCR2(-/-)) mice characterized by defective inflammatory macrophage recruitment, and blocking anti-CCR2 antibodies, we show that exudate macrophage accumulation in the lungs of influenza-infected mice is associated with pronounced AEC apoptosis and increased lung leakage and mortality. Among several proapoptotic mediators analyzed, TRAIL messenger RNA was found to be markedly up-regulated in alveolar exudate macrophages as compared with peripheral blood monocytes. Moreover, among the different alveolar-recruited leukocyte subsets, TRAIL protein was predominantly expressed on macrophages. Finally, abrogation of TRAIL signaling in exudate macrophages resulted in significantly reduced AEC apoptosis, attenuated lung leakage, and increased survival upon IV infection. Collectively, these findings demonstrate a key role for exudate macrophages in the induction of alveolar leakage and mortality in IV pneumonia. Epithelial cell apoptosis induced by TRAIL-expressing macrophages is identified as a major underlying mechanism.
Keywords
|
10.1084/jem.20080201 | J Exp Med | Original | 2008 |
Inhibition of urokinase activity reduces primary tumor growth and metastasis formation in a murine lung carcinoma model |
RATIONALE: Lung cancer is the most common malignancy in humans. Urokinase (uPA) plays a crucial role in carcinogenesis by facilitating tumor cell invasion and metastasis. OBJECTIVES: We investigated the effect of the highly specific urokinase inhibitor CJ-463 (benzylsulfonyl-D-Ser-Ser-4-amidinobenzylamide) on tumor growth, metastasis formation, and tumor vascularization in the murine Lewis lung carcinoma (LLC) and a human small lung cancer model. METHODS: A quantity of 3 x 10(6) LLC cells were subcutaneously injected into the right flank of C57Bl6/N mice, uPA knock out, and uPA receptor knockout mice. Seven days later mice were randomized to receive intraperitoneally either saline (control group), CJ-463 (10 and 100 mg/kg, twice a day), or its ineffective stereoisomer (10 mg/kg, twice a day). Tumor volume was measured every second day and metastasis formation was monitored by volumetric-computed tomography. Twelve days after onset of treatment mice were killed and tumors were prepared for histologic examination. MEASUREMENTS AND MAIN RESULTS: Treatment with CJ-463 resulted in a significant inhibition of primary tumor growth, with the highest efficacy seen in the 100 mg/kg group. In addition, histological analysis of the lung revealed a significant reduction in lung micrometastasis in the 100 mg/kg group. Similarly, a reduced seeding of tumor cells into the lung after intravenous injection of LLC cells was observed in inhibitor-treated mice. In these mice, treatment with CJ-463 appeared not to significantly alter the relative extent of tumor vascularization. In vitro, proliferation of LLC cells remained unchanged upon inhibitor treatment. CJ-463 was found to similarly reduce tumor growth in uPA receptor knockout mice, but was ineffective in uPA knockout mice. CONCLUSIONS: Our results suggest that synthetic low-molecular-weight uPA-inhibitors offer as novel agents for treatment of lung cancer.
Keywords
|
10.1164/rccm.200903-0342OC | Am J Respir Crit Care Med | Original | 2010 |
Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice |
Chronic obstructive pulmonary disease (COPD) is one of the most common causes of death worldwide. We report in an emphysema model of mice chronically exposed to tobacco smoke that pulmonary vascular dysfunction, vascular remodeling, and pulmonary hypertension (PH) precede development of alveolar destruction. We provide evidence for a causative role of inducible nitric oxide synthase (iNOS) and peroxynitrite in this context. Mice lacking iNOS were protected against emphysema and PH. Treatment of wild-type mice with the iNOS inhibitor N(6)-(1-iminoethyl)-L-lysine (L-NIL) prevented structural and functional alterations of both the lung vasculature and alveoli and also reversed established disease. In chimeric mice lacking iNOS in bone marrow (BM)-derived cells, PH was dependent on iNOS from BM-derived cells, whereas emphysema development was dependent on iNOS from non-BM-derived cells. Similar regulatory and structural alterations as seen in mouse lungs were found in lung tissue from humans with end-stage COPD.
Keywords
|
10.1016/j.cell.2011.08.035 | Cell | Original | 2011 |
Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice |
Lung ischaemia-reperfusion-induced oedema (LIRE) is a life-threatening condition that causes pulmonary oedema induced by endothelial dysfunction. Here we show that lungs from mice lacking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox2(y/-)) or the classical transient receptor potential channel 6 (TRPC6(-/-)) are protected from LIR-induced oedema (LIRE). Generation of chimeric mice by bone marrow cell transplantation and endothelial-specific Nox2 deletion showed that endothelial Nox2, but not leukocytic Nox2 or TRPC6, are responsible for LIRE. Lung endothelial cells from Nox2- or TRPC6-deficient mice showed attenuated ischaemia-induced Ca(2+) influx, cellular shape changes and impaired barrier function. Production of reactive oxygen species was completely abolished in Nox2(y/-) cells. A novel mechanistic model comprising endothelial Nox2-derived production of superoxide, activation of phospholipase C-gamma, inhibition of diacylglycerol (DAG) kinase, DAG-mediated activation of TRPC6 and ensuing LIRE is supported by pharmacological and molecular evidence. This mechanism highlights novel pharmacological targets for the treatment of LIRE.
Keywords
|
10.1038/ncomms1660 | Nat Commun | Original | 2012 |
Ciliated cells of pseudostratified airway epithelium do not become mucous cells after ovalbumin challenge |
Mucous cell metaplasia is a hallmark of airway diseases, such as asthma and chronic obstructive pulmonary disease. The majority of human airway epithelium is pseudostratified, but the cell of origin of mucous cells has not been definitively established in this type of airway epithelium. There is evidence that ciliated, club cell (Clara), and basal cells can all give rise to mucus-producing cells in different contexts. Because pseudostratified airway epithelium contains distinct progenitor cells from simple columnar airway epithelium, the lineage relationships of progenitor cells to mucous cells may be different in these two epithelial types. We therefore performed lineage tracing of the ciliated cells of the murine basal cell-containing airway epithelium in conjunction with the ovalbumin (OVA)-induced murine model of allergic lung disease. We genetically labeled ciliated cells with enhanced Yellow Fluorescent Protein (eYFP) before the allergen challenge, and followed the fate of these cells to determine whether they gave rise to newly formed mucous cells. Although ciliated cells increased in number after the OVA challenge, the newly formed mucous cells were not labeled with the eYFP lineage tag. Even small numbers of labeled mucous cells could not be detected, implying that ciliated cells make virtually no contribution to the new goblet cell pool. This demonstrates that, after OVA challenge, new mucous cells do not originate from ciliated cells in a pseudostratified basal cell-containing airway epithelium.
Keywords
|
10.1165/rcmb.2012-0146OC | Am J Respir Cell Mol Biol | Original | 2013 |
Dedifferentiation of committed epithelial cells into stem cells in vivo |
Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. Here we present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. After the ablation of airway stem cells, we observed a surprising increase in the proliferation of committed secretory cells. Subsequent lineage tracing demonstrated that the luminal secretory cells had dedifferentiated into basal stem cells. Dedifferentiated cells were morphologically indistinguishable from stem cells and they functioned as well as their endogenous counterparts in repairing epithelial injury. Single secretory cells clonally dedifferentiated into multipotent stem cells when they were cultured ex vivo without basal stem cells. By contrast, direct contact with a single basal stem cell was sufficient to prevent secretory cell dedifferentiation. In analogy to classical descriptions of amphibian nuclear reprogramming, the propensity of committed cells to dedifferentiate is inversely correlated to their state of maturity. This capacity of committed cells to dedifferentiate into stem cells may have a more general role in the regeneration of many tissues and in multiple disease states, notably cancer.
Keywords
|
10.1038/nature12777 | Nature | Original | 2013 |
Fgf10-positive cells represent a progenitor cell population during lung development and postnatally |
The lung mesenchyme consists of a widely heterogeneous population of cells that play crucial roles during development and homeostasis after birth. These cells belong to myogenic, adipogenic, chondrogenic, neuronal and other lineages. Yet, no clear hierarchy for these lineages has been established. We have previously generated a novel Fgf10(iCre) knock-in mouse line that allows lineage tracing of Fgf10-positive cells during development and postnatally. Using these mice, we hereby demonstrate the presence of two waves of Fgf10 expression during embryonic lung development: the first wave, comprising Fgf10-positive cells residing in the submesothelial mesenchyme at early pseudoglandular stage (as well as their descendants); and the second wave, comprising Fgf10-positive cells from late pseudoglandular stage (as well as their descendants). Our lineage-tracing data reveal that the first wave contributes to the formation of parabronchial and vascular smooth muscle cells as well as lipofibroblasts at later developmental stages, whereas the second wave does not give rise to smooth muscle cells but to lipofibroblasts as well as an Nkx2.1(-) E-Cad(-) Epcam(+) Pro-Spc(+) lineage that requires further in-depth analysis. During alveologenesis, Fgf10-positive cells give rise to lipofibroblasts rather than alveolar myofibroblasts, and during adult life, a subpopulation of Fgf10-expressing cells represents a pool of resident mesenchymal stromal (stem) cells (MSCs) (Cd45(-) Cd31(-) Sca-1(+)). Taken together, we show for the first time that Fgf10-expressing cells represent a pool of mesenchymal progenitors in the embryonic and postnatal lung. Our findings suggest that Fgf10-positive cells could be useful for developing stem cell-based therapies for treating interstitial lung diseases.
Keywords
|
10.1242/dev.099747 | Development | Original | 2014 |
Impact of S-adenosylmethionine decarboxylase 1 on pulmonary vascular remodeling |
BACKGROUND: Pulmonary hypertension (PH) is a life-threatening disease characterized by vascular remodeling and increased pulmonary vascular resistance. Chronic alveolar hypoxia in animals is often used to decipher pathways being regulated in PH. Here, we aimed to investigate whether chronic hypoxia-induced PH in mice can be reversed by reoxygenation and whether possible regression can be used to identify pathways activated during the reversal and development of PH by genome-wide screening. METHODS AND RESULTS: Mice exposed to chronic hypoxia (21 days, 10% O2) were reoxygenated for up to 42 days. Full reversal of PH during reoxygenation was evident by normalized right ventricular pressure, right heart hypertrophy, and muscularization of small pulmonary vessels. Microarray analysis from these mice revealed s-adenosylmethionine decarboxylase 1 (AMD-1) as one of the most downregulated genes. In situ hybridization localized AMD-1 in pulmonary vessels. AMD-1 silencing decreased the proliferation of pulmonary arterial smooth muscle cells and diminished phospholipase Cgamma1 phosphorylation. Compared with the respective controls, AMD-1 depletion by heterozygous in vivo knockout or pharmacological inhibition attenuated PH during chronic hypoxia. A detailed molecular approach including promoter analysis showed that AMD-1 could be regulated by early growth response 1, transcription factor, as a consequence of epidermal growth factor stimulation. Key findings from the animal model were confirmed in human idiopathic pulmonary arterial hypertension. CONCLUSIONS: Our study indicates that genome-wide screening in mice from a PH model in which full reversal of PH occurs can be useful to identify potential key candidates for the reversal and development of PH. Targeting AMD-1 may represent a promising strategy for PH therapy.
Keywords
|
10.1161/CIRCULATIONAHA.113.006402 | Circulation | Original | 2014 |
Distinct differences in gene expression patterns in pulmonary arteries of patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis with pulmonary hypertension |
RATIONALE: The development of pulmonary hypertension (PH) in patients with idiopathic pulmonary fibrosis (IPF) or chronic obstructive pulmonary disease (COPD) is associated with increased morbidity. OBJECTIVES: To elucidate whether vascular remodeling in a well-characterized PH-COPD and PH-IPF patient cohort results from similar or divergent molecular changes. METHODS: Vascular remodeling of donor, PH-COPD, and PH-IPF pulmonary arteries was assessed. Laser capture microdissected pulmonary artery profiles in combination with whole genome microarrays were performed. MEASUREMENTS AND MAIN RESULTS: Pulmonary arteries from patients with COPD and IPF with PH exhibited remodeling of vascular layers and reduction of lumen area. Pathway analyses comparing normalized gene expression profiles obtained from patients with PH-IPF or PH-COPD revealed the retinol and extracellular matrix (ECM) receptor interaction to be the most perturbed processes. Within the ECM-receptor pathway, differential regulation of 5 out of the top 10 results (collagen, type III, alpha-1; tenascin C; collagen, type VI, alpha-3; thrombospondin 2; and von Willebrand factor) were verified by real-time polymerase chain reaction and immunohistochemical staining. CONCLUSIONS: Despite clinical and histologic vascular remodeling in all patients with PH-COPD and PH-IPF, differential gene expression pattern was present in pulmonary artery profiles. Several genes involved in retinol metabolism and ECM receptor interaction enable discrimination of vascular remodeling in PH-IPF or PH-COPD. This suggests that pulmonary arterial remodeling in PH-COPD and PH-IPF is caused by different molecular mechanisms and may require specific therapeutic options.
Keywords
|
10.1164/rccm.201401-0037OC | Am J Respir Crit Care Med | Original | 2014 |
Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles |
In mammalian cells, the MYC oncoprotein binds to thousands of promoters. During mitogenic stimulation of primary lymphocytes, MYC promotes an increase in the expression of virtually all genes. In contrast, MYC-driven tumour cells differ from normal cells in the expression of specific sets of up- and downregulated genes that have considerable prognostic value. To understand this discrepancy, we studied the consequences of inducible expression and depletion of MYC in human cells and murine tumour models. Changes in MYC levels activate and repress specific sets of direct target genes that are characteristic of MYC-transformed tumour cells. Three factors account for this specificity. First, the magnitude of response parallels the change in occupancy by MYC at each promoter. Functionally distinct classes of target genes differ in the E-box sequence bound by MYC, suggesting that different cellular responses to physiological and oncogenic MYC levels are controlled by promoter affinity. Second, MYC both positively and negatively affects transcription initiation independent of its effect on transcriptional elongation. Third, complex formation with MIZ1 (also known as ZBTB17) mediates repression of multiple target genes by MYC and the ratio of MYC and MIZ1 bound to each promoter correlates with the direction of response.
Keywords
|
10.1038/nature13473 | Nature | Original | 2014 |
Two new insulator proteins, Pita and ZIPIC, target CP190 to chromatin |
Insulators are multiprotein-DNA complexes that regulate the nuclear architecture. The Drosophila CP190 protein is a cofactor for the DNA-binding insulator proteins Su(Hw), CTCF, and BEAF-32. The fact that CP190 has been found at genomic sites devoid of either of the known insulator factors has until now been unexplained. We have identified two DNA-binding zinc-finger proteins, Pita, and a new factor named ZIPIC, that interact with CP190 in vivo and in vitro at specific interaction domains. Genomic binding sites for these proteins are clustered with CP190 as well as with CTCF and BEAF-32. Model binding sites for Pita or ZIPIC demonstrate a partial enhancer-blocking activity and protect gene expression from PRE-mediated silencing. The function of the CTCF-bound MCP insulator sequence requires binding of Pita. These results identify two new insulator proteins and emphasize the unifying function of CP190, which can be recruited by many DNA-binding insulator proteins.
Keywords
|
10.1101/gr.174169.114 | Genome Res | Original | 2015 |
Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension |
Pulmonary hypertension (PH) is characterized by increased proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs). Forkhead box O (FoxO) transcription factors are key regulators of cellular proliferation. Here we show that in pulmonary vessels and PASMCs of human and experimental PH lungs, FoxO1 expression is downregulated and FoxO1 is inactivated via phosphorylation and nuclear exclusion. These findings could be reproduced using ex vivo exposure of PASMCs to growth factors and inflammatory cytokines. Pharmacological inhibition and genetic ablation of FoxO1 in smooth muscle cells reproduced PH features in vitro and in vivo. Either pharmacological reconstitution of FoxO1 activity using intravenous or inhaled paclitaxel, or reconstitution of the transcriptional activity of FoxO1 by gene therapy, restored the physiologically quiescent PASMC phenotype in vitro, linked to changes in cell cycle control and bone morphogenic protein receptor type 2 (BMPR2) signaling, and reversed vascular remodeling and right-heart hypertrophy in vivo. Thus, PASMC FoxO1 is a critical integrator of multiple signaling pathways driving PH, and reconstitution of FoxO1 activity offers a potential therapeutic option for PH.
Keywords
|
10.1038/nm.3695 | Nat Med | Original | 2014 |
Role for telomerase in pulmonary hypertension |
BACKGROUND: Cells exhibiting dysregulated growth may express telomerase reverse transcriptase (TERT), the dual function of which consists of maintaining telomere length, in association with the RNA template molecule TERC, and controlling cell growth. Here, we investigated lung TERT in human and experimental pulmonary hypertension (PH) and its role in controlling pulmonary artery smooth muscle cell (PA-SMC) proliferation. METHODS AND RESULTS: Marked TERT expression or activity was found in lungs from patients with idiopathic PH and from mice with PH induced by hypoxia or serotonin-transporter overexpression (SM22-5HTT(+) mice), chiefly within PA-SMCs. In cultured mouse PA-SMCs, TERT was expressed on growth stimulation by serum. The TERT inhibitor imetelstat and the TERT activator TA65 abrogated and stimulated PA-SMC growth, respectively. PA-SMCs from PH mice showed a heightened proliferative phenotype associated with increased TERT expression, which was suppressed by imetelstat treatment. TERC(-/-) mice at generation 2 and TERT(-/-) mice at generations 2, 3, and 4 developed less severe PH than did wild-type mice exposed to chronic hypoxia, with less distal pulmonary artery muscularization and fewer Ki67-stained proliferating PA-SMCs. Telomere length differed between TERC(-/-) and TERT(-/-) mice, whereas PH severity was similar in the 2 strains and across generations. Chronic imetelstat treatment reduced hypoxia-induced PH in wild-type mice or partially reversed established PH in SM22-5HTT(+) mice while simultaneously decreasing TERT expression. Opposite effects occurred in mice treated with TA65. CONCLUSIONS: Telomerase exerts telomere-independent effects on PA-SMC growth in PH and may constitute a treatment target for PH.
Keywords
|
10.1161/CIRCULATIONAHA.114.013258 | Circulation | Original | 2015 |
Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations |
Following injury, stem cells restore normal tissue architecture by producing the proper number and proportions of differentiated cells. Current models of airway epithelial regeneration propose that distinct cytokeratin 8-expressing progenitor cells, arising from p63(+) basal stem cells, subsequently differentiate into secretory and ciliated cell lineages. We now show that immediately following injury, discrete subpopulations of p63(+) airway basal stem/progenitor cells themselves express Notch pathway components associated with either secretory or ciliated cell fate commitment. One basal cell population displays intracellular Notch2 activation and directly generates secretory cells; the other expresses c-myb and directly yields ciliated cells. Furthermore, disrupting Notch ligand activity within the basal cell population at large disrupts the normal pattern of lineage segregation. These non-cell-autonomous effects demonstrate that effective airway epithelial regeneration requires intercellular communication within the broader basal stem/progenitor cell population. These findings have broad implications for understanding epithelial regeneration and stem cell heterogeneity.
Keywords
|
10.1016/j.stem.2015.01.002 | Cell Stem Cell | Original | 2015 |
Parent stem cells can serve as niches for their daughter cells |
Stem cells integrate inputs from multiple sources. Stem cell niches provide signals that promote stem cell maintenance, while differentiated daughter cells are known to provide feedback signals to regulate stem cell replication and differentiation. Recently, stem cells have been shown to regulate themselves using an autocrine mechanism. The existence of a 'stem cell niche' was first postulated by Schofield in 1978 to define local environments necessary for the maintenance of haematopoietic stem cells. Since then, an increasing body of work has focused on defining stem cell niches. Yet little is known about how progenitor cell and differentiated cell numbers and proportions are maintained. In the airway epithelium, basal cells function as stem/progenitor cells that can both self-renew and produce differentiated secretory cells and ciliated cells. Secretory cells also act as transit-amplifying cells that eventually differentiate into post-mitotic ciliated cells . Here we describe a mode of cell regulation in which adult mammalian stem/progenitor cells relay a forward signal to their own progeny. Surprisingly, this forward signal is shown to be necessary for daughter cell maintenance. Using a combination of cell ablation, lineage tracing and signalling pathway modulation, we show that airway basal stem/progenitor cells continuously supply a Notch ligand to their daughter secretory cells. Without these forward signals, the secretory progenitor cell pool fails to be maintained and secretory cells execute a terminal differentiation program and convert into ciliated cells. Thus, a parent stem/progenitor cell can serve as a functional daughter cell niche.
Keywords
|
10.1038/nature14553 | Nature | Original | 2015 |
Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system |
During CNS development, oligodendrocytes wrap their plasma membrane around axons to generate multilamellar myelin sheaths. To drive growth at the leading edge of myelin at the interface with the axon, mechanical forces are necessary, but the underlying mechanisms are not known. Using an interdisciplinary approach that combines morphological, genetic, and biophysical analyses, we identified a key role for actin filament network turnover in myelin growth. At the onset of myelin biogenesis, F-actin is redistributed to the leading edge, where its polymerization-based forces push out non-adhesive and motile protrusions. F-actin disassembly converts protrusions into sheets by reducing surface tension and in turn inducing membrane spreading and adhesion. We identified the actin depolymerizing factor ADF/cofilin1, which mediates high F-actin turnover rates, as an essential factor in this process. We propose that F-actin turnover is the driving force in myelin wrapping by regulating repetitive cycles of leading edge protrusion and spreading.
Keywords
|
10.1016/j.devcel.2015.05.013 | Dev Cell | Original | 2015 |
Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection |
Influenza A viruses (IAV) can cause lung injury and acute respiratory distress syndrome (ARDS), which is characterized by accumulation of excessive fluid (edema) in the alveolar airspaces and leads to hypoxemia and death if not corrected. Clearance of excess edema fluid is driven mostly by the alveolar epithelial Na,K-ATPase and is crucial for survival of patients with ARDS. We therefore investigated whether IAV infection alters Na,K-ATPase expression and function in alveolar epithelial cells (AECs) and the ability of the lung to clear edema. IAV infection reduced Na,K-ATPase in the plasma membrane of human and murine AECs and in distal lung epithelium of infected mice. Moreover, induced Na,K-ATPase improved alveolar fluid clearance (AFC) in IAV-infected mice. We identified a paracrine cell communication network between infected and noninfected AECs and alveolar macrophages that leads to decreased alveolar epithelial Na,K-ATPase function and plasma membrane abundance and inhibition of AFC. We determined that the IAV-induced reduction of Na,K-ATPase is mediated by a host signaling pathway that involves epithelial type I IFN and an IFN-dependent elevation of macrophage TNF-related apoptosis-inducing ligand (TRAIL). Our data reveal that interruption of this cellular crosstalk improves edema resolution, which is of biologic and clinical importance to patients with IAV-induced lung injury.
Keywords
|
10.1172/JCI83931 | J Clin Invest | Original | 2016 |
Synthesis and Characterization of a Promising Novel FFAR1/GPR40 Targeting Fluorescent Probe for beta-Cell Imaging |
Diabetes affects an increasing number of patients worldwide and is responsible for a significant rise in healthcare expenses. Imaging of beta-cells bears the potential to contribute to an improved understanding, diagnosis, and development of new treatment options for diabetes. Here, we describe the first small molecule fluorescent probe targeting the free fatty acid receptor 1 (FFAR1/GPR40). This receptor is highly expressed on beta-cells, and was up to now unexplored for imaging purposes. We designed a novel probe by facile modification of the selective and potent FFAR1 agonist TAK-875. Effective and specific binding of the probe was demonstrated using FFAR1 overexpressing cells. We also successfully labeled FFAR1 on MIN6 and INS1E cells, two widely used beta-cell models, by applying an effective amplification protocol. Finally, we showed that the probe is capable of inducing insulin secretion in a glucose-dependent manner, thus demonstrating that functional activity of the probe was maintained. These results suggest that our probe represents a first important step to successful beta-cell imaging by targeting FFAR1. The developed probe may prove to be particularly useful for in vitro and ex vivo studies of diabetic cellular and animal models to gain new insights into disease pathogenesis.
Keywords
|
10.1021/acschembio.5b00791 | ACS Chem Biol | Original | 2016 |
Lung epithelial GM-CSF improves host defense function and epithelial repair in influenza virus pneumonia-a new therapeutic strategy? |
Influenza viruses (IVs) circulate seasonally and are a common cause of respiratory infections in pediatric and adult patients. Additionally, recurrent pandemics cause massive morbidity and mortality worldwide. Infection may result in rapid progressive viral pneumonia with fatal outcome. Since accurate treatment strategies are still missing, research refocuses attention to lung pathology and cellular crosstalk to develop new therapeutic options.Alveolar epithelial cells (AECs) play an important role in orchestrating the pulmonary antiviral host response. After IV infection they release a cascade of immune mediators, one of which is granulocyte and macrophage colony-stimulating factor (GM-CSF). GM-CSF is known to promote differentiation, activation and mobilization of myeloid cells. In the lung, GM-CSF drives immune functions of alveolar macrophages and dendritic cells (DCs) and also improves epithelial repair processes through direct interaction with AECs. During IV infection, AEC-derived GM-CSF shows a lung-protective effect that is also present after local GM-CSF application. This mini-review provides an overview on GM-CSF-modulated immune responses to IV pneumonia and its therapeutic potential in severe IV pneumonia.
Keywords
|
10.1186/s40348-016-0055-5 | Mol Cell Pediatr | Review | 2016 |
Mild and Selective Mono-Iodination of Unprotected Peptides as Initial Step for the Synthesis of Bioimaging Probes |
Chemoselective functionalization of peptides and proteins to selectively introduce residues for detection, capture, or specific derivatization is of high interest to the synthetic community. Here we report a new method for the mild and effective mono-iodination of tyrosine residues in fully unprotected peptides. This method is highly chemoselective and compatible with a wide variety of functional groups. The introduced iodine can subsequently serve as a handle for further functionalization such as introduction of fluorescent dyes and thus be used for chemoselective labeling of isolated peptides.
|
10.1021/acs.bioconjchem.6b00461 | Bioconjug Chem | Original | 2016 |
Two-Way Conversion between Lipogenic and Myogenic Fibroblastic Phenotypes Marks the Progression and Resolution of Lung Fibrosis |
Idiopathic pulmonary fibrosis (IPF) is a form of progressive interstitial lung disease with unknown etiology. Due to a lack of effective treatment, IPF is associated with a high mortality rate. The hallmark feature of this disease is the accumulation of activated myofibroblasts that excessively deposit extracellular matrix proteins, thus compromising lung architecture and function and hindering gas exchange. Here we investigated the origin of activated myofibroblasts and the molecular mechanisms governing fibrosis formation and resolution. Genetic engineering in mice enables the time-controlled labeling and monitoring of lipogenic or myogenic populations of lung fibroblasts during fibrosis formation and resolution. Our data demonstrate a lipogenic-to-myogenic switch in fibroblastic phenotype during fibrosis formation. Conversely, we observed a myogenic-to-lipogenic switch during fibrosis resolution. Analysis of human lung tissues and primary human lung fibroblasts indicates that this fate switching is involved in IPF pathogenesis, opening potential therapeutic avenues to treat patients.
Keywords
|
10.1016/j.stem.2016.10.004 | Cell Stem Cell | Original | 2017 |
Hypercapnia Impairs ENaC Cell Surface Stability by Promoting Phosphorylation, Polyubiquitination and Endocytosis of beta-ENaC in a Human Alveolar Epithelial Cell Line |
Acute lung injury is associated with formation of pulmonary edema leading to impaired gas exchange. Patients with acute respiratory distress syndrome (ARDS) require mechanical ventilation to improve oxygenation; however, the use of relatively low tidal volumes (to minimize further injury of the lung) often leads to further accumulation of carbon dioxide (hypercapnia). Hypercapnia has been shown to impair alveolar fluid clearance (AFC), thereby causing retention of pulmonary edema, and may lead to worse outcomes; however, the underlying molecular mechanisms remain incompletely understood. AFC is critically dependent on the epithelial sodium channel (ENaC), which drives the vectorial transport of Na(+) across the alveolar epithelium. Thus, in the current study, we investigated the mechanisms by which hypercapnia effects ENaC cell surface stability in alveolar epithelial cells (AECs). Elevated CO2 levels led to polyubiquitination of beta-ENaC and subsequent endocytosis of the alpha/beta-ENaC complex in AECs, which were prevented by silencing the E3 ubiquitin ligase, Nedd4-2. Hypercapnia-induced ubiquitination and cell surface retrieval of ENaC were critically dependent on phosphorylation of the Thr615 residue of beta-ENaC, which was mediated by the extracellular signal-regulated kinase (ERK)1/2. Furthermore, activation of ERK1/2 led to subsequent activation of AMP-activated protein kinase (AMPK) and c-Jun N-terminal kinase (JNK)1/2 that in turn phosphorylated Nedd4-2 at the Thr899 residue. Importantly, mutation of Thr899 to Ala markedly inhibited the CO2-induced polyubiquitination of beta-ENaC and restored cell surface stability of the ENaC complex, highlighting the critical role of Nedd4-2 phosphorylation status in targeting ENaC. Collectively, our data suggest that elevated CO2 levels promote activation of the ERK/AMPK/JNK axis in a human AEC line, in which ERK1/2 phosphorylates beta-ENaC whereas JNK mediates phosphorylation of Nedd4-2, thereby facilitating the channel-ligase interaction. The hypercapnia-induced ENaC dysfunction may contribute to impaired alveolar edema clearance and thus, interfering with these molecular mechanisms may improve alveolar fluid balance and lead to better outcomes in patients with ARDS.
Keywords
|
10.3389/fimmu.2017.00591 | Front Immunol | Original | 2017 |
Mitochondrial Complex IV Subunit 4 Isoform 2 Is Essential for Acute Pulmonary Oxygen Sensing |
RATIONALE: Acute pulmonary oxygen sensing is essential to avoid life-threatening hypoxemia via hypoxic pulmonary vasoconstriction (HPV) which matches perfusion to ventilation. Hypoxia-induced mitochondrial superoxide release has been suggested as a critical step in the signaling pathway underlying HPV. However, the identity of the primary oxygen sensor and the mechanism of superoxide release in acute hypoxia, as well as its relevance for chronic pulmonary oxygen sensing, remain unresolved. OBJECTIVES: To investigate the role of the pulmonary-specific isoform 2 of subunit 4 of the mitochondrial complex IV (Cox4i2) and the subsequent mediators superoxide and hydrogen peroxide for pulmonary oxygen sensing and signaling. METHODS AND RESULTS: Isolated ventilated and perfused lungs from Cox4i2(-/-) mice lacked acute HPV. In parallel, pulmonary arterial smooth muscle cells (PASMCs) from Cox4i2(-/-) mice showed no hypoxia-induced increase of intracellular calcium. Hypoxia-induced superoxide release which was detected by electron spin resonance spectroscopy in wild-type PASMCs was absent in Cox4i2(-/-) PASMCs and was dependent on cysteine residues of Cox4i2. HPV could be inhibited by mitochondrial superoxide inhibitors proving the functional relevance of superoxide release for HPV. Mitochondrial hyperpolarization, which can promote mitochondrial superoxide release, was detected during acute hypoxia in wild-type but not Cox4i2(-/-) PASMCs. Downstream signaling determined by patch-clamp measurements showed decreased hypoxia-induced cellular membrane depolarization in Cox4i2(-/-) PASMCs compared with wild-type PASMCs, which could be normalized by the application of hydrogen peroxide. In contrast, chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling were not or only slightly affected by Cox4i2 deficiency, respectively. CONCLUSIONS: Cox4i2 is essential for acute but not chronic pulmonary oxygen sensing by triggering mitochondrial hyperpolarization and release of mitochondrial superoxide which, after conversion to hydrogen peroxide, contributes to cellular membrane depolarization and HPV. These findings provide a new model for oxygen-sensing processes in the lung and possibly also in other organs.
Keywords
|
10.1161/CIRCRESAHA.116.310482 | Circ Res | Original | 2017 |
Our site uses cookies and similar technologies. By using the site, you consent to the use of cookies.
You can find more information on this in our Privacy Policy.